Structured Low Rank Approximation of a Bezout Matrix
نویسندگان
چکیده
منابع مشابه
Structured Low Rank Approximation of a Bezout Matrix
The task of determining the approximate greatest common divisor (GCD) of more than two univariate polynomials with inexact coefficients can be formulated as computing for a given Bezout matrix a new Bezout matrix of lower rank whose entries are near the corresponding entries of that input matrix. We present an algorithm based on a version of structured nonlinear total least squares (SNTLS) meth...
متن کاملStructured Low Rank Approximation of a Sylvester Matrix
The task of determining the approximate greatest common divisor (GCD) of univariate polynomials with inexact coefficients can be formulated as computing for a given Sylvester matrix a new Sylvester matrix of lower rank whose entries are near the corresponding entries of that input matrix. We solve the approximate GCD problem by a new method based on structured total least norm (STLN) algorithms...
متن کاملStructured Low Rank Approximation
Abstract. This paper concerns the construction of a structured low rank matrix that is nearest to a given matrix. The notion of structured low rank approximation arises in various applications, ranging from signal enhancement to protein folding to computer algebra, where the empirical data collected in a matrix do not maintain either the specified structure or the desirable rank as is expected ...
متن کاملTensor Low Multilinear Rank Approximation by Structured Matrix Low-Rank Approximation
We present a new connection between higherorder tensors and affinely structured matrices, in the context of low-rank approximation. In particular, we show that the tensor low multilinear rank approximation problem can be reformulated as a structured matrix low-rank approximation, the latter being an extensively studied and well understood problem. We first consider symmetric tensors. Although t...
متن کاملStochastic algorithms for solving structured low-rank matrix approximation problems
In this paper, we investigate the complexity of the numerical construction of the Hankel structured low-rank approximation (HSLRA) problem, and develop a family of algorithms to solve this problem. Briefly, HSLRA is the problem of finding the closest (in some pre-defined norm) rank r approximation of a given Hankel matrix, which is also of Hankel structure. We demonstrate that finding optimal s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics in Computer Science
سال: 2007
ISSN: 1661-8270,1661-8289
DOI: 10.1007/s11786-007-0014-6